By Topic

Monocular real-time 3D articulated hand pose estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Romero, J. ; Comput. Vision & Active Perception Lab., KTH, Stockholm, Sweden ; Kjellstrom, H. ; Kragic, D.

Markerless, vision based estimation of human hand pose over time is a prerequisite for a number of robotics applications, such as learning by demonstration (LbD), health monitoring, teleoperation, human-robot interaction. It has special interest in humanoid platforms, where the number of degrees of freedom makes conventional programming challenging. Our primary application is LbD in natural environments where the humanoid robot learns how to grasp and manipulate objects by observing a human performing a task. This paper presents a method for continuous vision based estimation of human hand pose. The method is non-parametric, performing a nearest neighbor search in a large database (100000 entries) of hand pose examples. The main contribution is a real time system, robust to partial occlusions and segmentation errors, that provides full hand pose recognition from markerless data. An additional contribution is the modeling of constraints based on temporal consistency in hand pose, without explicitly tracking the hand in the high dimensional pose space. The pose representation is rich enough to enable a descriptive human-to-robot mapping. Experiments show the pose estimation to be more robust and accurate than a non-parametric method without temporal constraints.

Published in:

Humanoid Robots, 2009. Humanoids 2009. 9th IEEE-RAS International Conference on

Date of Conference:

7-10 Dec. 2009