By Topic

Force position control for a pneumatic anthropomorphic hand

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Alexander Bierbaum ; Institute for Anthropomatics, University of Karlsruhe (TH), Germany ; Julian Schill ; Tamim Asfour ; RĂ¼diger Dillmann

Robot hands based on fluidic actuators are a promising technology for humanoid robots due to their compact size and excellent power-weight-ratio. Yet, such actuators are difficult to control due to the inherent nonlinearities of pneumatic systems. In this paper we present a control approach based on a simplified model of the fluidic actuator providing force and position control and further fingertip contact detection. We have implemented the method on the microcontroller of the human hand sized FRH-4 robot hand with 8 DoF and present results of several experiments, including system response and force controlled operation.

Published in:

2009 9th IEEE-RAS International Conference on Humanoid Robots

Date of Conference:

7-10 Dec. 2009