By Topic

Evolutionary Multi-Objective optimization for nurse scheduling problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sharif, O. ; Comput. Eng. Dept., Eastern Mediterranean Univ., Gazimagusa, Cyprus ; Unveren, A. ; Acan, A.

Nurse scheduling problem (NSP) is the problem of determining a reasonable and efficient work schedule for nurses. This paper presents a new external memory-based approach along with Multi-Objective Genetic Algorithms (MOGA) to solve multiobjective NSPs. In multiobjective modeling of NSPs, there are several objectives which are in conflict with each other, and there are some hard constraints that should be satisfied in any solution. The presented approach can solve multiobjective NSPs in an efficient way. As demonstrated by the experimental results, MOGA together with the maintained external memory extracted significantly more nondominated solutions compared to MOGA without a memory.

Published in:

Soft Computing, Computing with Words and Perceptions in System Analysis, Decision and Control, 2009. ICSCCW 2009. Fifth International Conference on

Date of Conference:

2-4 Sept. 2009