By Topic

Improving Shape Retrieval by Spectral Matching and Meta Similarity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Egozi, A. ; Dept. of Electr. Eng., Ben-Gurion Univ., Beer-Sheva, Israel ; Keller, Y. ; Guterman, H.

We propose two computational approaches for improving the retrieval of planar shapes. First, we suggest a geometrically motivated quadratic similarity measure, that is optimized by way of spectral relaxation of a quadratic assignment. By utilizing state-of-the-art shape descriptors and a pairwise serialization constraint, we derive a formulation that is resilient to boundary noise, articulations and nonrigid deformations. This allows both shape matching and retrieval. We also introduce a shape meta-similarity measure that agglomerates pairwise shape similarities and improves the retrieval accuracy. When applied to the MPEG-7 shape dataset in conjunction with the proposed geometric matching scheme, we obtained a retrieval rate of 92.5%.

Published in:

Image Processing, IEEE Transactions on  (Volume:19 ,  Issue: 5 )