By Topic

Multiple Binary Classifications via Linear Discriminant Analysis for Improved Controllability of a Powered Prosthesis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Levi J. Hargrove ; Institute of Biomedical Engineering at the University of New Brunswick, Fredericton, Canada ; Erik J. Scheme ; Kevin B. Englehart ; Bernard S. Hudgins

This paper describes a novel pattern recognition based myoelectric control system that uses parallel binary classification and class specific thresholds. The system was designed with an intuitive configuration interface, similar to existing conventional myoelectric control systems. The system was assessed quantitatively with a classification error metric and functionally with a clothespin test implemented in a virtual environment. For each case, the proposed system was compared to a state-of-the-art pattern recognition system based on linear discriminant analysis and a conventional myoelectric control scheme with mode switching. These assessments showed that the proposed control system had a higher classification error (p < 0.001) but yielded a more controllable myoelectric control system (p < 0.001) as measured through a clothespin usability test implemented in a virtual environment. Furthermore, the system was computationally simple and applicable for real-time embedded implementation. This work provides the basis for a clinically viable pattern recognition based myoelectric control system which is robust, easily configured, and highly usable.

Published in:

IEEE Transactions on Neural Systems and Rehabilitation Engineering  (Volume:18 ,  Issue: 1 )