By Topic

The Effects of a Dynamic Tuberal Support on Ischial Buttock Load and Pattern of Blood Supply

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Paul van Geffen ; Institute for Biomedical Technology (Mira), Laboratory of Biomechanical Engineering, Department of Engineering Technology, University of Twente, Enschede, The Netherlands ; Jasper Reenalda ; Peter H. Veltink ; Bart F. J. M. Koopman

Sitting acquired pressure ulcers are places of tissue breakdown that mainly occur under the ischial tuberosities (ITs). Successive durations of pressure relief help the buttock tissue recover from sustained deformation and blood-flow stagnation. A computer-aided simulator chair was developed with two adjustable tuberal support elements (TSE) integrated in a force-sensing seating plane (FSP). This study investigated the redistribution of external buttock load in relation to the pattern (i.e., dynamics) of subtuberal blood supply in sitting with a dynamic tuberal support of 1/60 Hz (80 mm/min). Fifteen healthy male subjects were seated with their ITs on the TSE. The experiment involved periodic TSE adjustment in which buttock interface pressure was measured with the FSP and an external pressure mapping device (PMD). Light-guide tissue spectrophotometry was used for simultaneous noninvasive measurement of oxygenation and perfusion in the skin (< 2 mm) and subcutaneous (< 8 mm) tissue under the ITs. TSE adjustment seemed effective to regulate centre of buttock pressure and the forces under the ITs. Differences in measurement with the FSP and PMD have been found due to Hammocking at the seat interface and inaccurate peak pressure readings. Subtuberal blood supply was inversely related to the contact load under the ITs. A rapid inflow of blood in the initial stage of tuberal unloading, followed by a gradual outflow in the rest of the movement cycle indicates that the average blood supply increases when the adjustment frequency increases. Future studies must address the influence of a dynamic tuberal support on the ischial buttock load and pattern of blood supply in impaired individuals.

Published in:

IEEE Transactions on Neural Systems and Rehabilitation Engineering  (Volume:18 ,  Issue: 1 )