By Topic

In-Shoe Plantar Pressure Measurement and Analysis System Based on Fabric Pressure Sensing Array

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Lin Shu ; Inst. of Textiles & Clothing, Hong Kong Polytech. Univ., Kowloon, China ; Tao Hua ; Yangyong Wang ; Qiao Li
more authors

Spatial and temporal plantar pressure distributions are important and useful measures in footwear evaluation, athletic training, clinical gait analysis, and pathology foot diagnosis. However, present plantar pressure measurement and analysis systems are more or less uncomfortable to wear and expensive. This paper presents an in-shoe plantar pressure measurement and analysis system based on a textile fabric sensor array, which is soft, light, and has a high-pressure sensitivity and a long service life. The sensors are connected with a soft polymeric board through conductive yarns and integrated into an insole. A stable data acquisition system interfaces with the insole, wirelessly transmits the acquired data to remote receiver through Bluetooth path. Three configuration modes are incorporated to gain connection with desktop, laptop, or smart phone, which can be configured to comfortably work in research laboratories, clinics, sport ground, and other outdoor environments. A real-time display and analysis software is presented to calculate parameters such as mean pressure, peak pressure, center of pressure (COP), and shift speed of COP. Experimental results show that this system has stable performance in both static and dynamic measurements.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:14 ,  Issue: 3 )