Cart (Loading....) | Create Account
Close category search window
 

Leakage Power and Circuit Aging Cooptimization by Gate Replacement Techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yu Wang ; Dept. of Electr. En gineering, Tsinghua Univ., Beijing, China ; Xiaoming Chen ; Wenping Wang ; Yu Cao
more authors

As technology scales, the aging effect caused by negative bias temperature instability (NBTI) has become a major reliability concern. In the mean time, reducing leakage power remains to be one of the key design goals. Because both NBTI-induced circuit degradation and standby leakage power have a strong dependency on the input vectors, input vector control (IVC) technique could be adopted to reduce the leakage power and mitigate NBTI-induced degradation. The IVC technique, however, is ineffective for larger circuits. Consequently, in this paper, we propose two gate replacement algorithms [direct gate replacement (DGR) algorithm and divide and conquer-based gate replacement (DCBGR) algorithm], together with optimal input vector selection, to simultaneously reduce the leakage power and mitigate NBTI-induced degradation. Our experimental results on 23 benchmark circuits reveal the following. 1) Both DGR and DCBGR algorithms outperform pure IVC technique by 15%-30% with 5% delay relaxation for three different design goals: leakage power reduction only, NBTI mitigation only, and leakage/NBTI cooptimization. 2) The DCBGR algorithm leads to better optimization results and save on average more than 10 runtime compared to the DGR algorithm. 3) The area overhead for leakage reduction is much more than that for NBTI mitigation.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:19 ,  Issue: 4 )

Date of Publication:

April 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.