Cart (Loading....) | Create Account
Close category search window

Ferromagnetic metamaterial with tunable negative index of refraction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Da-yong Zou ; Department of Electronic Sciences and Engineering, Key Laboratory of Modern Acoustics of MOE, Nanjing University, Nanjing 210093, People''s Republic of China ; Ai-min Jiang ; Wu, Rui-xin

Your organization might have access to this article on the publisher's site. To check, click on this link: 

We investigate the index of refraction of the ferromagnetic metamaterial, which consists of periodic layered ferrite and semiconductor or metallic mesh. We find that the metamaterial has the negative index; the frequency range and magnitude of the negative index are tunable in applied magnetic fields. The frequency range of the negative index shifts to higher frequencies as the applied magnetic fields increase. The permeability and permittivity of the ferrite and other component materials, as well as their thickness ratios, influence the tunable range of the negative index. It is demonstrated that ferrite-mesh structure has a much lower loss than that of a ferrite-semiconductor structure.

Published in:

Journal of Applied Physics  (Volume:107 ,  Issue: 1 )

Date of Publication:

Jan 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.