By Topic

The challenges of using an embedded MPI for hardware-based processing nodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Daniel L. Ly ; Department of Electrical and Computer Engineering, University of Toronto, ON, Canada ; Manuel Saldaña ; Paul Chow

This paper presents several challenges and solutions in designing an efficient Message Passing Interface (MPI) implementation for embedded FPGA applications. Popular MPI implementations are designed for general-purpose computers which have significantly different properties and trade-offs than embedded platforms. Our work focuses on two types of interactions that are not present in typical MPI implementations. First, a number of improvements designed to accelerate software-hardware interactions are introduced, including a Direct Memory Access (DMA) engine with MPI functionality; the use of non-interrupting, non-blocking messages; and a proposed function, called MPI_Coalesce, to reduce the function call overhead from a series of sequential messages. These improvements resulted in a speed-up of 5-fold compared to an embedded software-only MPI implementation. Next, a novel dataflow message passing model is presented for hardware-hardware interactions to overcome the limitations of atomic messages, allowing hardware engines to communicate and compute simultaneously. This dataflow model provides a natural method for hardware designers to build high performance, MPI systems. Finally, two hardware cores, Tee cores and message watchdog timers, are introduced to provide a transparent method of debugging hardware MPI designs.

Published in:

Field-Programmable Technology, 2009. FPT 2009. International Conference on

Date of Conference:

9-11 Dec. 2009