By Topic

Design of Reconfigurable UWB Transmitter to Implement Multi-rate MB-OFDM UWB Wireless System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Vennila, C. ; Dept. of ECE.NITT, Nat. Inst. of Technol., Tiruchirappalli, India ; Lakshminarayanan, G. ; Tungala, S.

Abstract-Dynamic and partial reconfiguration allows efficient resource exploitation by configuring tasks on demand and may lead to a decreased chip size, which reduces the static power consumption and can be used in adaptive systems. These systems are able to adapt themselves to the demand of their environment during run-time. The benefit of using dynamic reconfiguration is the possibility to use smaller FPGAs by outsourcing configuration data. This flexibility can be used for many wireless applications. In this paper, a novel Ultra Wide Band (UWB) transmitter is reconfigured to implement multirate MB-OFDM UWB wireless system. In order to prove the efficacy of this approach, a UWB transmitter was designed with a reprogrammable puncturer supporting seven different data rates to demonstrate the practical use of partial reconfiguration technology. The dynamic reconfigurable UWB transmitter proposed in this paper consumes comparatively minimum FPGA resources than the conventional static reconfiguration. Reconfiguration latency is also minimum since the dynamic reconfigurable module taken in this work consumes only 15 slices and successfully implemented on XILINX Virtex II Pro XC2VP30.

Published in:

Advances in Computing, Control, & Telecommunication Technologies, 2009. ACT '09. International Conference on

Date of Conference:

28-29 Dec. 2009