By Topic

Learning Communicating Automata from MSCs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bollig, B. ; LSV, ENS Cachan, Cachan, France ; Katoen, J. ; Kern, C. ; Leucker, M.

This paper is concerned with bridging the gap between requirements and distributed systems. Requirements are defined as basic message sequence charts (MSCs) specifying positive and negative scenarios. Communicating finite-state machines (CFMs), i.e., finite automata that communicate via FIFO buffers, act as system realizations. The key contribution is a generalization of Angluin's learning algorithm for synthesizing CFMs from MSCs. This approach is exact-the resulting CFM precisely accepts the set of positive scenarios and rejects all negative ones-and yields fully asynchronous implementations. The paper investigates for which classes of MSC languages CFMs can be learned, presents an optimization technique for learning partial orders, and provides substantial empirical evidence indicating the practical feasibility of the approach.

Published in:

Software Engineering, IEEE Transactions on  (Volume:36 ,  Issue: 3 )