Cart (Loading....) | Create Account
Close category search window
 

Shape-Based Human Detection and Segmentation via Hierarchical Part-Template Matching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhe Lin ; Adv. Technol. Labs., Adobe Syst. Inc., San Jose, CA, USA ; Davis, L.S.

We propose a shape-based, hierarchical part-template matching approach to simultaneous human detection and segmentation combining local part-based and global shape-template-based schemes. The approach relies on the key idea of matching a part-template tree to images hierarchically to detect humans and estimate their poses. For learning a generic human detector, a pose-adaptive feature computation scheme is developed based on a tree matching approach. Instead of traditional concatenation-style image location-based feature encoding, we extract features adaptively in the context of human poses and train a kernel-SVM classifier to separate human/nonhuman patterns. Specifically, the features are collected in the local context of poses by tracing around the estimated shape boundaries. We also introduce an approach to multiple occluded human detection and segmentation based on an iterative occlusion compensation scheme. The output of our learned generic human detector can be used as an initial set of human hypotheses for the iterative optimization. We evaluate our approaches on three public pedestrian data sets (INRIA, MIT-CBCL, and USC-B) and two crowded sequences from Caviar Benchmark and Munich Airport data sets.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:32 ,  Issue: 4 )

Date of Publication:

April 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.