By Topic

Instinct-Based Mating in Genetic Algorithms Applied to the Tuning of 1-NN Classifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Thiago Quirino ; University of Miami, Coral Gables ; Miroslav Kubat ; Nicholas J. Bryan

The behavior of the genetic algorithm (GA), a popular approach to search and optimization problems, is known to depend, among other factors, on the fitness function formula, the recombination operator, and the mutation operator. What has received less attention is the impact of the mating strategy that selects the chromosomes to be paired for recombination. Existing GA implementations mostly choose them probabilistically, according to their fitness function values, but we show that more sophisticated mating strategies can not only accelerate the search, but perhaps even improve the quality of the GA-generated solution. In our implementation, we took inspiration from the "opposites-attract” principle that is so common in nature. As a testbed, we chose the problem of 1-NN classifier tuning where genetic solutions have been employed before, and are thus well-understood by the research community. We propose three "instinct-based” mating strategies and experimentally investigate their behaviors.

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:22 ,  Issue: 12 )