Cart (Loading....) | Create Account
Close category search window

To SAT or Not to SAT: Scalable Exploration of Functional Dependency

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jiang, J.-H.R. ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Chih-Chun Lee ; Mishchenko, A. ; Chung-Yang Huang

Functional dependency is concerned with rewriting a Boolean function f as a function h over a set of base functions {g1,¿,gn}, i.e., f = h(g1,¿,gn). It plays an important role in many aspects of electronic design automation (EDA). Prior approaches to the exploration of functional dependency are based on binary decision diagrams (BDDs), which may not be easily scalable to large designs. This paper formulates both single-output and multiple-output functional dependencies as satisfiability (SAT) solving and exploits extensively the capability of a modern SAT solver. Thereby, functional dependency can be detected effectively through incremental SAT solving, and the dependency function h, if it exists, is obtained through Craig interpolation. The proposed method enables (1) scalable detection of functional dependency, (2) fast enumeration of dependency function under a large set of candidate base functions, and (3) potential application to large-scale logic synthesis and formal verification. Experimental results show that the proposed method is far superior to prior work and scales well in dealing with the largest ISCAS and ITC benchmark circuits with up to 200 K gates.

Published in:

Computers, IEEE Transactions on  (Volume:59 ,  Issue: 4 )

Date of Publication:

April 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.