By Topic

Area-Time Efficient Implementation of the Elliptic Curve Method of Factoring in Reconfigurable Hardware for Application in the Number Field Sieve

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Kris Gaj ; George Mason University, Fairfax ; Soonhak Kwon ; Patrick Baier ; Paul Kohlbrenner
more authors

A novel portable hardware architecture of the Elliptic Curve Method of factoring, designed and optimized for application in the relation collection step of the Number Field Sieve, is described and analyzed. A comparison with an earlier proof-of-concept design by Pelzl et al. has been performed, and a substantial improvement has been demonstrated in terms of both the execution time and the area-time product. The ECM architecture has been ported across five different families of FPGA devices in order to select the family with the best performance to cost ratio. A timing comparison with the highly optimized software implementation, GMP-ECM, has been performed. Our results indicate that low-cost families of FPGAs, such as Spartan-3 and Spartan-3E, offer at least an order of magnitude improvement over the same generation of microprocessors in terms of the performance to cost ratio, without the use of embedded FPGA resources, such as embedded multipliers.

Published in:

IEEE Transactions on Computers  (Volume:59 ,  Issue: 9 )