Cart (Loading....) | Create Account
Close category search window

Nonlinear image restoration using FFT-based conjugate gradient methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Ng, M.K. ; Comput. Sci. Lab., Australian Nat. Univ., Canberra, ACT, Australia

Nonlinear image restoration finds applications in a wide variety of research areas. In this paper, we consider nonlinear space-invariant imaging system with additive noise. The restored images can be found by solving weighted Toeplitz least squares problems. Since the normal equations matrices are non-Toeplitz in general, the fast Fourier transforms (FFTs) cannot be utilized in the evaluation of their inverses. We employ the preconditioned conjugate gradient method (PCG) with the FFT-based preconditioners to solve regularized linear systems arising from nonlinear image restoration problems. Thus we precondition these linear systems in the Fourier domain, while iterating in the spatial domain. Numerical examples are reported on a ground-based atmospheric imaging problem to demonstrate the fast convergence of the FFT-based PCG method

Published in:

Image Processing, 1995. Proceedings., International Conference on  (Volume:2 )

Date of Conference:

23-26 Oct 1995

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.