By Topic

An efficient approximation to the correlated Nakagami-m sums and its application in equal gain diversity receivers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zlatanov, N. ; Fac. of Electr. Eng. & Inf. Technol., Ss. Cyril & Methodius Univ., Skopje, Macedonia ; Hadzi-Velkov, Z. ; Karagiannidis, G.K.

There are several cases in wireless communications theory where the statistics of the sum of independent or correlated Nakagami-m random variables (RVs) is necessary to be known. However, a closed-form solution to the distribution of this sum does not exist when the number of constituent RVs exceeds two, even for the special case of Rayleigh fading. In this paper, we present an efficient closed-form approximation for the distribution of the sum of arbitrary correlated Nakagami-m envelopes with identical and integer fading parameters. The distribution becomes exact for maximal correlation, while the tightness of the proposed approximation is validated statistically by using the Chi-square and the Kolmogorov-Smirnov goodness-of-fit tests. As an application, the approximation is used to study the performance of equal-gain combining (EGC) systems operating over arbitrary correlated Nakagami-m fading channels, by utilizing the available analytical results for the error-rate performance of an equivalent maximal-ratio combining (MRC) system.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:9 ,  Issue: 1 )