By Topic

A New Reliability Prediction Model in Manufacturing Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Guo-Dong Li ; Dept. of Syst. Design, Tokyo Metropolitan Univ., Hino, Japan ; Masuda, S. ; Yamaguchi, D. ; Nagai, M.

Reliability prediction has been widely studied in many research fields to improve product and system reliability in manufacturing systems. Traditionally, to establish the prediction model, modelers would use all training data without preference. However, the prediction model based only on the most recent data may have better performance. In this paper, to realize an accurate prediction with the most recent data sets, we use the grey model to establish the reliability model. Then, the cubic spline function is integrated into the grey model to enhance the prediction capability of GM(1, 1), a single variable first order grey model. The newly generated model is defined as 3spGM(1, 1). To further improve the prediction accuracy, the particle swarm optimization (PSO) algorithm is applied to 3spGM(1, 1). We call the improved version P-3spGM(1, 1). Finally, we validated the effectiveness of the proposed model using failure data sets of electric product manufacturing systems.

Published in:

Reliability, IEEE Transactions on  (Volume:59 ,  Issue: 1 )