By Topic

State-Switching Control Technique for Switched Reluctance Motor Drives: Theory and Implementation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Srdjan M. Lukic ; North Carolina State University, Raleigh, NC, USA ; Ali Emadi

Switched reluctance motors (SRMs) exhibit advantageous features such as low inertia, fault tolerance, high efficiency, and simple design. However, its control is fairly complex due to nonlinear characteristics of the magnetic flux linkage seen on the stator windings. Several memory and/or processor intensive solutions have been proposed to deal with the control problem, constraining the use of the motor to high-cost and high-performance applications. The focus of this paper is to develop a simple controller for the SRM based on state-switching digital control. The concept of state-switching digital control is to control the motor state (speed) by applying a high or a low energy pulse-above and below the desired steady state of the motor. Such a controller can be implemented in low-complexity analog circuitry. This paper presents two methods of motor control: one for single-speed applications and another for variable speed applications. In addition, this paper derives the control equations and disturbance rejection response. Simulation and experimental results for various operating modes are presented.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:57 ,  Issue: 9 )