By Topic

A Synchronous 50% Duty-Cycle Clock Generator in 0.35- \mu m CMOS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tsung-Hsien Lin ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Chao-Ching Chi ; Wei-Hao Chiu ; Yu-Hsiang Huang

This paper presents a synchronous 50% duty-cycle clock generator (DCCG). The proposed DCCG circuit comprises of a clock generator and a phase error integrator. The clock generator is edge-triggered by an input signal to produce an output whose pulse width is determined by a delay line. The delay line is controlled by the phase error integrator which detects the phase difference between the input and output signals. The proposed DCCG is designed such that when the phase error is zeroed, i.e., the input and output signals are synchronized, the delay is properly adjusted and the output signal duty cycle converges to 50%. The proposed DCCG is implemented in a 0.35-μm CMOS process. The circuit can operate from 70 to 500 MHz, and accommodates a wide range of input duty cycle ranging from 5% to 95%. The duty-cycle error of the output signal is less than 1.5%. Operated from a 3.3-V supply voltage, this circuit dissipates 7 mA at 500 MHz.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:19 ,  Issue: 4 )