Cart (Loading....) | Create Account
Close category search window
 

Comparison in Power Consumption of Synchronous and Asynchronous Optical Packet Switches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Eramo, V. ; Dept. of Inf. & Commun., Sapienza Univ. of Rome, Rome, Italy

Power consumption is expected to become the main limiting factor for scaling the current network architectures to capabilities of hundreds of terabit or even petabits. The use of optical switching fabrics (SFs) could relax the limitations to some extent but large optical buffers occupy larger area and dissipate more power than electronic ones. In this paper, we evaluate the power consumption of bufferless optical packet switches (OPSs), using the wavelength conversion to solve the output packet contentions. Sophisticated analytical models are introduced to evaluate the power consumption of synchronous and asynchronous OPSs (SOPSs and AOPSs) versus the offered traffic, the main switch parameters, and the used device characteristics. The power consumption in SOPSs and AOPSs is compared when commercial semiconductor optical amplifiers are used to implement SFs and wavelength converters (WCs). The obtained results show that the high power consumption in synchronization stage makes SOPS less effective than AOPS in terms of power consumption. For instance, when the OPSs are dimensioned with a sufficient number of WCs and offered traffic is 0.8, SOPS consumes 140% of power more than does the AOPS. Finally, though power consumption due to cooling system is not considered in the proposed model, we observe that both SOPSs and AOPSs consume much less power per gigabit per second carried than commercial routers.

Published in:

Lightwave Technology, Journal of  (Volume:28 ,  Issue: 5 )

Date of Publication:

March1, 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.