By Topic

Automated Selection and Placement of Single Cells Using Vision-Based Feedback Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Anis, Y.H. ; Center for Ecogenomics, Arizona State Univ., Tempe, AZ, USA ; Holl, M.R. ; Meldrum, D.R.

We present a robotic manipulation system for automated selection and transfer of individual living cells to analysis locations. We begin with a commonly used cell transfer technique using glass capillary micropipettes to aspirate and release living cells suspended in liquid growth media. Using vision-based feedback and closed-loop process control, two individual three-axis robotic stages position the micropipette tip in proximity to the cell of interest. The cell is aspirated and the tip is moved to a target location where the cell is dispensed. Computer vision is used to monitor and inspect the success of the dispensing process. In our initial application, the target cell destination is a microwell etched in a fused silica substrate. The system offers a robust and flexible technology for cell selection and manipulation. Applications for this technology include embryonic stem cells transfer, blastomere biopsy, cell patterning, and cell surgery.

Published in:

Automation Science and Engineering, IEEE Transactions on  (Volume:7 ,  Issue: 3 )