By Topic

Cascaded mode decision for MPEG-2 to H.264/AVC intra frame transcoding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yinyi Lin ; National Central University, Chung Li, Taiwan ; Jyun-De Wu

The newest international video-coding standard H.264/AVC significantly achieves better coding performance compared to prior video coding standards such as MPEG-2, which has been widely used in today's digital video applications. To provide the interoperability between MPEG-2 and H.264/AVC, in this paper we propose an efficient cascaded mode decision for MPEG-2 to H.264/AVC intra frame transcoding, which is accomplished in two stages. In the first stage, the low-frequency AC components of discrete cosine transform (DCT) block of a MB is used to select I4MB or I16MB mode prediction; while in the second stage sum of absolute Hadamard transform differences (SATD) coefficients, including SATD value and its variance, is used to skip improper modes for rate distortion optimization (RDO) mode decision. The experimental results, conducted on JM12.2 with fast C8MB mode decision, reveal that over 49% of computation time on average can be saved, while preserving good coding performance when compared with complex cascaded pixel domain transcoding (CCPDT); or 85% (a speed up factor of 7) when compared with CCPDT without considering fast C8MB. The coding performance is also compared with two other distinct algorithms, and the results demonstrate that the proposed algorithm momentously outperforms these two algorithms in all three respects (PSNR), bit rate as well as computation time.

Published in:

IEEE Transactions on Consumer Electronics  (Volume:55 ,  Issue: 4 )