By Topic

Toward machine translation with statistics and syntax and semantics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Dekai Wu ; Dept. of Comput. Sci. & Eng., Hong Kong Univ. of Sci. & Technol., Hong Kong, China

In this paper, we survey some central issues in the historical, current, and future landscape of statistical machine translation (SMT) research, taking as a starting point an extended three-dimensional MT model space. We posit a socio-geographical conceptual disparity hypothesis, that aims to explain why language pairs like Chinese-English have presented MT with so much more difficulty than others. The evolution from simple token-based to segment-based to tree-based syntactic SMT is sketched. For tree-based SMT, we consider language bias rationales for selecting the degree of compositional power within the hierarchy of expressiveness for transduction grammars (or synchronous grammars). This leads us to inversion transductions and the ITG model prevalent in current state-of-the-art SMT, along with the underlying ITG hypothesis, which posits a language universal. Against this backdrop, we enumerate a set of key open questions for syntactic SMT. We then consider the more recent area of semantic SMT. We list principles for successful application of sense disambiguation models to semantic SMT, and describe early directions in the use of semantic role labeling for semantic SMT.

Published in:

Automatic Speech Recognition & Understanding, 2009. ASRU 2009. IEEE Workshop on

Date of Conference:

Nov. 13 2009-Dec. 17 2009