By Topic

Structure learning of Bayesian networks by genetic algorithms: a performance analysis of control parameters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Larranaga, P. ; Dept. of Comput. Sci. & Artificial Intelligence, Univ. of the Basque Country, San Sebastian, Spain ; Poza, M. ; Yurramendi, Y. ; Murga, R.H.
more authors

We present a new approach to structure learning in the field of Bayesian networks. We tackle the problem of the search for the best Bayesian network structure, given a database of cases, using the genetic algorithm philosophy for searching among alternative structures. We start by assuming an ordering between the nodes of the network structures. This assumption is necessary to guarantee that the networks that are created by the genetic algorithms are legal Bayesian network structures. Next, we release the ordering assumption by using a “repair operator” which converts illegal structures into legal ones. We present empirical results and analyze them statistically. The best results are obtained with an elitist genetic algorithm that contains a local optimizer

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:18 ,  Issue: 9 )