By Topic

On compatible priors for Bayesian networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Cowell, R.G. ; Sch. of Math. Actuarial Sci. & Stat., City Univ., London, UK

Given a Bayesian network of discrete random variables with a hyper-Dirichlet prior, a method is proposed for assigning Dirichlet priors to the conditional probabilities of structurally different networks. It defines a distance measure between priors which is to be minimized for the assignment process. Intuitively one would expect that if two models priors are to qualify as being `close' in some sense, then their posteriors should also be nearby after an observation. However one does not know in advance what will be observed next. Thus we are led to propose an expectation of Kullback-Leibler distances over all possible next observations to define a measure of distance between priors. In conjunction with the additional assumptions of global and local independence of the parameters, a number of theorems emerge which are usually taken as reasonable assumptions in the Bayesian network literature. A simple example is given to illustrate the technique

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:18 ,  Issue: 9 )