By Topic

Glyphs for visualizing uncertainty in vector fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wittenbrink, C.M. ; Baskin Center for Comput. Eng. & Comput. Sci., California Univ., Santa Cruz, CA, USA ; Pang, A.T. ; Lodha, S.K.

Environmental data have inherent uncertainty which is often ignored in visualization. Meteorological stations and doppler radars, including their time series averages, have a wealth of uncertainty information that traditional vector visualization methods such as meteorological wind barbs and arrow glyphs simply ignore. We have developed a new vector glyph to visualize uncertainty in winds and ocean currents. Our approach is to include uncertainty in direction and magnitude, as well as the mean direction and length, in vector glyph plots. Our glyph shows the variation in uncertainty, and provides fair comparisons of data from instruments, models, and time averages of varying certainty. We also define visualizations that incorporate uncertainty in an unambiguous manner as verity visualization. We use both quantitative and qualitative methods to compare our glyphs to traditional ones. Subjective comparison tests with experts are provided, as well as objective tests, where the information density of our new glyphs and traditional glyphs are compared. The design of the glyph and numerous examples using environmental data are given. We show enhanced visualizations, data together with their uncertainty information, that may improve understanding of environmental vector field data quality

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:2 ,  Issue: 3 )