By Topic

Analysis of a parallel volume rendering system based on the shear-warp factorization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Lacroute, P. ; Silicon Graphics Comput. Syst., Mountain View, CA, USA

This paper presents a parallel volume rendering algorithm that can render a 256×256×225 voxel medical data set at over 15 Hz and a 512×512×334 voxel data set at over 7 Hz on a 32-processor Silicon Graphics Challenge. The algorithm achieves these results by minimizing each of the three components of execution time: computation time, synchronization time, and data communication time. Computation time is low because the parallel algorithm is based on the recently-reported shear-warp serial volume rendering algorithm which is over five times faster than previous serial algorithms. The algorithm uses run-length encoding to exploit coherence and an efficient volume traversal to reduce overhead. Synchronization time is minimized by using dynamic load balancing and a task partition that minimizes synchronization events. Data communication costs are low because the algorithm is implemented for shared-memory multiprocessors, a class of machines with hardware support for low-latency fine-grain communication and hardware caching to hide latency. We draw two conclusions from our implementation. First, we find that on shared-memory architectures data redistribution and communication costs do not dominate rendering time. Second, we find that cache locality requirements impose a limit on parallelism in volume rendering algorithms. Specifically, our results indicate that shared-memory machines with hundreds of processors would be useful only for rendering very large data sets

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:2 ,  Issue: 3 )