By Topic

Maotai 2.0: Data Race Prevention in View-Oriented Parallel Programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Leung, K. ; Dept. of Comput. Sci., Univ. of Otago, Dunedin, New Zealand ; Huang, Z. ; Huang, Q. ; Werstein, P.

This paper proposes a data race prevention scheme, which can prevent data races in the View-Oriented Parallel Programming (VOPP) model. VOPP is a novel shared-memory data-centric parallel programming model, which uses views to bundle mutual exclusion with data access. We have implemented the data race prevention scheme with a memory protection mechanism. Experimental results show that the extra overhead of memory protection is trivial in our applications. We also present a new VOPP implementation-Maotai 2.0, which has advanced features such as deadlock avoidance, producer/consumer view and system queues, in addition to the data race prevention scheme. The performance of Maotai 2.0 is evaluated and compared with modern programming models such as OpenMP and Cilk.

Published in:

Parallel and Distributed Computing, Applications and Technologies, 2009 International Conference on

Date of Conference:

8-11 Dec. 2009