By Topic

The dynamic performance of an isolated self-excited induction generator driven by a variable-speed wind turbine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mahmoud M. Neam ; Electrical Power and Machines Department, Faculty of Engineering, Helwan University, Cairo, Egypt ; Fayez F. M. El-Sousy ; Mohamed A. Ghazy ; Maged A. Abo-Adma

This paper presents the analysis, design and simulation or wind-powered self-excited induction generator (SEIG). The three-phase SEIG is driven by a variable-speed prime mover (VSPM) such as a wind turbine for the clean alternative renewable energy in rural areas. The VSPM is modeled by as a variable-speed separately-excited DC motor to simulate to the wind turbine. Also, the paper describes the dynamic performance of the VSPM and SEIG which includes prime mover torque, rotor speed, rotor frequency, and d-q axes dynamic stator voltages, As well as the electromagnetic torque and the magnetizing inductance of the SEIG. During voltage build up of the SEIG, the variation of the magnetizing inductance is considered. The input of wind powered SEIG is the wind speed which is not controllable. The wind speed could be, constant, or varying in a form of pulses, sinusoidal, or step change. Actually wind speed almost has a random variation according to the wind turbine location and its atmospheric conditions, but they can be set to operate within a given variation of speed. In this paper, the dynamic performance of the SEIG during loading instant is considered. The value of the excitation capacitance of the SEIG is also considered. The simulation results are given using Matlab7/Simulink toolbox program.

Published in:

Power Systems Conference, 2006. MEPCON 2006. Eleventh International Middle East  (Volume:1 )

Date of Conference:

19-21 Dec. 2006