Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Computing Rightmost Eigenvalues for Small-Signal Stability Assessment of Large-Scale Power Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rommes, J. ; NXP Semicond., Eindhoven, Netherlands ; Martins, N. ; Freitas, F.D.

Knowledge of the rightmost eigenvalues of system matrices is essential in power system small-signal stability analysis. Accurate and efficient computation of the rightmost eigenvalues, however, is a challenge, especially for large-scale descriptor systems. In this paper we present an algorithm, based on subspace accelerated Rayleigh quotient iteration (SARQI), for the automatic computation of the rightmost eigenvalues of large-scale (descriptor) system matrices. The effectiveness and robustness of the algorithm is illustrated by numerical experiments with realistic power system models, and we also show how SARQI can be used to compute eigenvalues closest to any damping ratio and repeated eigenvalues. The algorithm can be used for stability analysis in any other field of engineering.

Published in:

Power Systems, IEEE Transactions on  (Volume:25 ,  Issue: 2 )