Cart (Loading....) | Create Account
Close category search window
 

EFIE Analysis of Low-Frequency Problems With Loop-Star Decomposition and Calderón Multiplicative Preconditioner

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Su Yan ; Dept. of Microwave Eng., Univ. of Electron. Sci. & Technol. of China, Chengdu, China ; Jian-Ming Jin ; Zaiping Nie

Low-frequency electromagnetic problems are analyzed using the electric field integral equation (EFIE) with loop-star basis functions to alleviate the low-frequency breakdown problem. By constructing the loop-star basis functions with the curvilinear RWG (CRWG) basis and the Buffa-Christiansen (BC) basis, respectively, the recently proposed Caldero¿n multiplicative preconditioner (CMP) is improved to become applicable at low frequencies. The Gram matrix arisen from CRWG loop-star basis and BC loop-star basis is studied in detail. A direct solution approach is introduced to solve the Gram matrix equation. The proposed Calderon preconditioner improves the condition of the EFIE operator at low frequencies, which results in a fast convergence of the preconditioned EFIE system. Several numerical examples demonstrate the fast and mesh-independent convergence of the preconditioned system.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:58 ,  Issue: 3 )

Date of Publication:

March 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.