By Topic

Nonidentical Linear Pulse-Coupled Oscillators Model With Application to Time Synchronization in Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Zhulin An ; Inst. of Comput. Technol., Chinese Acad. of Sci., Beijing, China ; Hongsong Zhu ; Xinrong Li ; Chaonong Xu
more authors

Similar to other cyber infrastructure systems, as wireless sensor networks become larger and more complex, many classic algorithms may no longer work efficiently. This paper presents a wireless sensor network time synchronization model that was initially inspired by synchronous flashing of fireflies. Synchronous flashing of fireflies is an interesting phenomenon that has been studied for decades. A variety of models have been proposed to explain this phenomenon, among which is the pulse-coupled oscillators model that models fireflies as oscillators. The oscillators in such a model interact only through discrete pulses, similar to the flashing of fireflies. In this paper, we propose a new nonidentical linear pulse-coupled oscillators model and use the model to analyze synchronization of pulse-coupled oscillators with different frequencies. The conditions to achieve and maintain synchronization are derived, and then, the results are used to prove that the oscillators in the model can achieve synchronization eventually, except for a set of frequencies with zero Lebesgue measure. Furthermore, through simulations and implementation on a wireless sensor network testbed, we demonstrate that the proposed nonidentical linear pulse-coupled oscillators model can be used in designing lightweight scalable time synchronization protocols for distributed systems.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:58 ,  Issue: 6 )