By Topic

Deterministic Approach for Spatial Diversity Analysis of Radar Systems Using Near-Field Radar Cross Section of a Metallic Plate

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Deban, R. ; Electr. Eng. Dept., Ecole Polytech., Montreal, QC, Canada ; Boutayeb, H. ; Ke Wu ; Conan, J.

A deterministic analysis of spatial diversity is presented in connection with radar systems. A numerical technique based on physical optics is used for our analysis. Contrary to statistical models, the proposed technique takes into account accurate near-field radar cross section of the target, and radiation characteristics of transmitting and receiving antennas. The power scattered by the target and received by multiple antennas as a function of the target aspect angle and distance is analyzed. Two combining methods of received powers are tested and statistical analysis is performed showing that, using spatial diversity, the angular range can be increased significantly and the standard deviation of the target response can be reduced. In order to validate our analysis and proposed scheme, experimental measurements were carried out using a metallic plate and a car as targets. This work has potential applications in automotive collision warning/avoidance radar systems.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:58 ,  Issue: 3 )