By Topic

Photon Counting OTDR: Advantages and Limitations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Eraerds, P. ; Group of Appl. Phys., Univ. of Geneva, Geneva, Switzerland ; Legre, M. ; Jun Zhang ; Zbinden, H.
more authors

In this paper, we provide a detailed insight into photon-counting optical time-domain reflectometer (??-OTDR) operation, ranging from Geiger-mode operation of avalanche photodiodes (APD), analysis of different APD bias schemes, to the discussion of OTDR perspectives. Our results demonstrate that an InGaAs/InP APD-based ??-OTDR has the potential of outperforming the dynamic range of a conventional state-of-the-art OTDR by 10 dB, as well as the two-point resolution by a factor of 20. Considering the trace acquisition speed of ??-OTDRs, we find that a combination of rapid gating for high photon flux and free running mode for low photon flux is the most efficient solution. Concerning dead zones, our results are less promising. Without additional measures, e.g., an optical shutter, the photon counting approach is not competitive.

Published in:

Lightwave Technology, Journal of  (Volume:28 ,  Issue: 6 )