By Topic

Adaptive Techniques for Overcoming Performance Degradation Due to Aging in CMOS Circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kumar, S.V. ; Dept. of Electr. & Comput. Eng., Univ. of Minnesota, Minneapolis, MN, USA ; Kim, C.H. ; Sapatnekar, S.S.

Negative bias temperature instability (NBTI) in pMOS transistors has become a major reliability concern in present-day digital circuit design. Further, with the recent introduction of Hf-based high-k dielectrics for gate leakage reduction, positive bias temperature instability (PBTI), the dual effect in nMOS transistors, has also reached significant levels. Consequently, designs are required to build in substantial guardbands in order to guarantee reliable operation over the lifetime of a chip, and these involve large area and power overheads. In this paper, we begin by proposing the use of adaptive body bias (ABB) and adaptive supply voltage (ASV) to maintain optimal performance of an aged circuit, and demonstrate its advantages over a guard banding technique such as synthesis. We then present a hybrid approach, utilizing the merits of both ABB and synthesis, to ensure that the resultant circuit meets the performance constraints over its lifetime, and has a minimal area and power overhead, as compared with a nominally designed circuit.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:19 ,  Issue: 4 )