Cart (Loading....) | Create Account
Close category search window
 

A Newly Developed Formulation Suitable for Matrix Manipulation of Layered Medium Green's Functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiong, J.L. ; Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA ; Weng Cho Chew

Based on a recently developed formulation of the dyadic Green's function for layered media (DGLM), this work gives the matrix element representation of the DGLM for general RWG basis functions, including basis functions straddling across different layers and half-RWG basis function attached to an infinite ground plane. It has been rigorously proved that this representation is absent of any undesired line integrals, the same as the popular Michalski-Zheng's formulation of type C. This work also gives the analytical solution for some typical cylindrically symmetric problems, which can be used to validate any formulation for layered medium problems.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:58 ,  Issue: 3 )

Date of Publication:

March 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.