Cart (Loading....) | Create Account
Close category search window
 

Improved Cross-Polarization Characteristics of Circular Microstrip Antenna Employing Arc-Shaped Defected Ground Structure (DGS)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Guha, D. ; Inst. of Radio Phys. & Electron., Univ. of Calcutta, Kolkata, India ; Kumar, C. ; Pal, S.

Application of defected ground structure (DGS) to suppress cross-polarized (XP) radiation from a microstrip patch antenna has been reinvestigated using a new DGS geometry for much improved characteristics. Arc-shaped defect has been used in pair, symmetrically located under a circular patch. A number of optimization parameters have been examined using simulated results, leading to a design indicating improved XP behavior. A set of identical prototypes, with and without DGS, have been experimentally studied. The presence of the DGS shows as much as 30 dB isolation of the XP level from its peak radiation, and that compared to an identical patch without DGS indicates an improvement by as much as 12 dB. The relative suppression in XP values are found to be around 7-12 dB over ??75?? elevation around the boresight of the patch.

Published in:

Antennas and Wireless Propagation Letters, IEEE  (Volume:8 )

Date of Publication:

2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.