By Topic

Multistability in Networks With Self-Excitation and High-Order Synaptic Connectivity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhenkun Huang ; Sch. of Sci., Jimei Univ., Xiamen, China ; Qiankun Song ; Chunhua Feng

This paper presents new results on multistability of networks when neurons undergo self-excitation and second-order synaptic connectivity. Due to self-excitation of neurons, we split state space into invariant regions and establish new criteria of coexistence of equilibria (periodic orbits) which are exponentially stable. It is shown that high-order synaptic connectivity and external inputs play an important role on the number of equilibria and their convergent dynamics. As a consequence, our results refute traditional viewpoint: high-order interactions of neurons have faster convergence rate and greater storage capacity than first-order ones. Finally, numerical simulations will illustrate our new and interesting results.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:57 ,  Issue: 8 )