By Topic

Optimal Power Management in Fueled Systems With Finite Storage Capacity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Levron, Y. ; Sch. of Electr. Eng., Tel Aviv Univ., Tel Aviv, Israel ; Shmilovitz, D.

Fueled power systems using secondary energy storage are analyzed. A generic model of such systems is suggested, and an optimal power management strategy that maximizes efficiency is derived analytically. The model and optimal management solution emphasizes the constraint imposed by finite storage capacity. The optimal generated energy is established independently of the system's capacity, and load, and general characteristics of it are derived and proved. The analytic solution provides an intuitive comprehension into the optimal power management, without needing numeric simulations.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:57 ,  Issue: 8 )