By Topic

Low bit-rate video compression with neural networks and temporal subsampling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
C. Cramer ; Dept. of Electr. & Comput. Eng., Duke Univ., Durham, NC, USA ; E. Gelenbe ; H. Bakircloglu

In this paper we describe a novel neural network technique for video compression, using a “point-process” type neural network model we have developed which is closer to biophysical reality and is mathematically much more tractable than standard models. Our algorithm uses an adaptive approach based upon the users' desired video quality Q, and achieves compression ratios of up to 500:1 for moving gray-scale images, based on a combination of motion detection, compression, and temporal subsampling of frames. This leads to a compression ratio of over 1000:1 for full-color video sequences with the addition of the standard 4:1:1 spatial subsampling ratios in the chrominance images. The signal-to-noise ratio ranges from 29 dB to over 34 dB. Compression is performed using a combination of motion detection, neural networks, and temporal subsampling of frames. A set of neural networks is used to adaptively select the desired compression of each picture block as a function of the reconstruction quality. The motion detection process separates out regions of the frame which need to be retransmitted. Temporal subsampling of frames, along with reconstruction techniques, lead to the high compression ratios

Published in:

Proceedings of the IEEE  (Volume:84 ,  Issue: 10 )