By Topic

Neural network-assisted effective lossy compression of medical images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Panagiotidis, N.G. ; Dept. of Electr. & Comput. Eng., Nat. Tech. Univ. of Athens, Greece ; Kalogeras, D. ; Kollias, S.D. ; Stafylopatis, A.

A neural network architecture is proposed and shown to be very effective in performing lossy compression of medical images. A novel ROI-JPEG technique is introduced as the coding platform, in which the neural architecture adaptively selects regions of interest (ROI) in the images. By letting the selected ROI be coded with high quality, in contrast to the rest of image areas, high compression ratios are achieved, while retaining the significant (from medical point of view) image content. The performance of the method is illustrated by means of experimental results in real life problems taken from pathology and telemedicine applications

Published in:

Proceedings of the IEEE  (Volume:84 ,  Issue: 10 )