By Topic

Low-Complexity Linear Zero-Forcing for the MIMO Broadcast Channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Guthy, C. ; Associate Inst. for Signal Process., Tech. Univ. Munchen, Munich, Germany ; Utschick, W. ; Dietl, G.

Maximizing the sum capacity in the multiple-input multiple-output (MIMO) broadcast channel requires the use of dirty paper coding (DPC). However, practical implementations of DPC which are nearly optimum exhibit high computational complexity. As an alternative to DPC linear zero-forcing can be used where the multiuser interference is completely canceled by linear beamforming. Determining the optimum user allocation, transmit and receive filters thereby constitutes a combinatorial and nonconvex optimization problem. To circumvent its direct solution and therefore reduce complexity, we propose an algorithm that successively allocates data streams to users and, in contrast to state-of-the-art approaches, includes the receive filters into the optimization. We then show several steps that reduce the complexity of the algorithm at marginal performance losses. Thus, performance of state-of-the-art approaches can be maintained while the computational complexity is reduced considerably, as it is shown by a detailed complexity analysis and simulation results.

Published in:

Selected Topics in Signal Processing, IEEE Journal of  (Volume:3 ,  Issue: 6 )