Cart (Loading....) | Create Account
Close category search window

A linear-time algorithm to find modules of fault trees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dutuit, Y. ; Bordeaux I Univ., Talence, France ; Rauzy, A.

A module of a fault tree is a subtree whose terminal events do not occur elsewhere in the tree. Modules, which are independent subtrees, can be used to reduce the computational cost of basic operations on fault trees, such as the computation of the probability of the root event or the computation of the minimal cut sets. This paper presents a linear time algorithm to detect modules of a fault tree, coherent or not, that is derived from the Tarjan algorithm to find strongly connected components of a graph. The authors show, on a benchmark of real fault trees, that their method detects modules of trees with several hundred gates and events within few milliseconds on a personal computer

Published in:

Reliability, IEEE Transactions on  (Volume:45 ,  Issue: 3 )

Date of Publication:

Sep 1996

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.