Cart (Loading....) | Create Account
Close category search window
 

Accurate analysis of MMI devices with two-dimensional confinement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rajarajan, M. ; Dept. of Electr. Electron. & Inf. Eng., City Univ., London, UK ; Rahman, B.M.A. ; Wongcharoen, T. ; Grattan, K.T.V.

The accurate analysis of multimode interference (MMI) devices with two-dimensional (2-D) confinement has been demonstrated by using the least squares boundary residual (LSBR) method. Accurate modal propagation constants and spatial field profiles in the MMI section are obtained by using the vector H-field based finite element method. The accurate calculation of the excited modal coefficients is achieved by using the LSBR, which satisfies the continuity of the transverse field components more rigorously than using simple overlap integrals

Published in:

Lightwave Technology, Journal of  (Volume:14 ,  Issue: 9 )

Date of Publication:

Sep 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.