By Topic

Experimental evaluation of the 3-D optical shuffle interconnection module of the sliding Banyan architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
R. R. Michael ; BDM Federal Inc., Arlington, VA, USA ; M. P. Chistensen ; M. W. Haney

A free-space optical interconnection module for the sliding Banyan (SB) multistage interconnection network is experimentally evaluated. This three-dimensional (3-D) optical shuffle topology employs a macro-lens array in a reflective architecture. Interconnections for multiple stages are interleaved across a single two-dimensional (2-D) multichip array of “smart pixels”. The experimental module implements five interleaved stages of shuffle interconnections with approximately 10 μm resolution and 10 μm registration accuracy across a 10×10 cm, 256 node, simulated optoelectronic (OE) backplane. The experiments demonstrate the use of conventional refractive optical elements to implement the required shuffle interconnection pattern in a SB network. The results suggest that this reflective 3-D shuffle interconnected SB approach may lead to ATM switching fabrics with aggregate throughputs scaleable to >1 Tb/s. Such a system could be implemented with vertical cavity surface emitting laser (VCSEL) based smart pixel OE technology

Published in:

Journal of Lightwave Technology  (Volume:14 ,  Issue: 9 )