By Topic

A Collaborative Filtering Recommendation Algorithm Based on SVD Smoothing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
YiBo Ren ; Zhejiang Bus. Technol. Inst., Ningbo, China ; SongJie Gong

Recommender system is one of the most important technologies in electronic commerce. And the collaborative filtering is almost the popular approach used in the recommender systems. With the development of electronic commerce systems, the magnitudes of users and items grow rapidly, resulted in the extreme sparsity of user rating data set. Traditional similarity measure methods work poor in this situation, make the quality of recommendation system decreased dramatically. Sparsity of users' ratings is the major reason causing the poor quality. To address this issue, a collaborative filtering recommendation algorithm based on singular value decomposition (SVD) smoothing is presented. This approach predicts item ratings that users have not rated by the employ of SVD technology, and then uses Pearson correlation similarity measurement to find the target users' neighbors, lastly produces the recommendations. The collaborative filtering recommendation algorithm based on SVD smoothing can alleviate the sparsity problems of the user item rating dataset, and can provide better recommendation than traditional collaborative filtering algorithms.

Published in:

Intelligent Information Technology Application, 2009. IITA 2009. Third International Symposium on  (Volume:2 )

Date of Conference:

21-22 Nov. 2009