By Topic

Embedding classical communication topologies in the scalable OPAM architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Barak, A. ; Dept. of Comput. Sci., Hebrew Univ., Jerusalem, Israel ; Schenfeld, E.

The paper presents novel embeddings of various classical topologies into the OPAM multicomputer. OPAM consists of a large number of processors that are connected by a two level, crossbar based interconnection network. The network combines a large, optical circuit-switched crossbar (reconfigurable network), with many small, packet-switching crossbars. The necessary embedding is very different than classical approaches. The goal in our case is to minimize routing decisions, so that communication requests can be satisfied by passing through two small crossbars. We show how to map parallel programs to this architecture using graph contraction notations. The family of parallel programs that we consider consists of multiple processes and communication links that are represented by connected, regular graphs such as rings, trees, two dimensional grids, cube connected cycles and hypercubes. In each case we show how to partition the vertex set of the program's graph to subsets, and how to assign each subset a cluster of processors in order to realize the topology of the given problem. In some of the cases we also prove that our partition and assignment algorithms are optimal

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:7 ,  Issue: 9 )