By Topic

A Speaker Identification System Using MFCC Features with VQ Technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ali Zulfiqar ; Dept. of CS & IT, UoG, Gujrat, Pakistan ; Aslam Muhammad ; Martinez Enriquez A. M.

The performance of speaker identification systems has improved due to recent advances in speech processing techniques but there is still need of improvement in term of text-independent speaker identification and suitable modelling techniques for voice feature vectors. It becomes difficult for person to recognize a voice when an uncontrollable noise adds in to it. In this paper, feature vectors from speech are extracted by using mel-frequency cepstral coefficients and vector quantization technique is implemented through Linde-Buzo-Gray algorithm. Two purposeful speech databases with added noise, recorded at sampling frequencies 8000 Hz and 11025 Hz, are used to check the accuracy of the developed speaker identification system in non-ideal conditions. An analysis is also provided by performing different experiments on the databases that number of vectors in VQ codebook and sampling frequency influence the identification accuracy significantly.

Published in:

Intelligent Information Technology Application, 2009. IITA 2009. Third International Symposium on  (Volume:3 )

Date of Conference:

21-22 Nov. 2009